We introduce a just-in-time runtime program transformation strategy based on repeated recursion unfolding. Our online program optimization generates several versions of a recursion differentiated by the minimal number of recursive steps covered. The base case of the recursion is ignored in our technique. Our method is introduced here on the basis of single linear direct recursive rules. When a recursive call is encountered at runtime, first an unfolder creates specializations of the associated recursive rule on-the-fly and then an interpreter applies these rules to the call. Our approach reduces the number of recursive rule applications to its logarithm at the expense of introducing a logarithmic number of generic unfolded rules. We prove correctness of our online optimization technique and determine its time complexity. For recursions which have enough simplifyable unfoldings, a super-linear is possible, i.e. speedup by more than a constant factor. The necessary simplification is problem-specific and has to be provided at compile-time. In our speedup analysis, we prove a sufficient condition as well as a sufficient and necessary condition for super-linear speedup relating the complexity of the recursive steps of the original rule and the unfolded rules. We have implemented an unfolder and meta-interpreter for runtime repeated recursion unfolding with just five rules in Constraint Handling Rules (CHR) embedded in Prolog. We illustrate the feasibility of our approach with simplifications, time complexity results and benchmarks for some basic tractable algorithms. The simplifications require some insight and were derived manually. The runtime improvement quickly reaches several orders of magnitude, consistent with the super-linear speedup predicted by our theorems.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
17+阅读 · 2018年12月10日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员