We study the private online change detection problem for dynamic communities, using a censored block model (CBM). We consider edge differential privacy (DP) in both local and central settings, and propose joint change detection and community estimation procedures for both scenarios. We seek to understand the fundamental tradeoffs between the privacy budget, detection delay, and exact community recovery of community labels. Further, we provide theoretical guarantees for the effectiveness of our proposed method by showing necessary and sufficient conditions for change detection and exact recovery under edge DP. Simulation and real data examples are provided to validate the proposed methods.
翻译:本文研究动态社区的隐私在线变化检测问题,采用删失块模型(CBM)作为基础框架。我们分别针对本地和中心化两种场景下的边差分隐私(DP)保护机制,提出了适用于两种场景的联合变化检测与社区估计算法。本研究旨在揭示隐私预算、检测延迟与社区标签精确恢复三者之间的基本权衡关系。进一步地,我们通过推导边差分隐私约束下变化检测与精确恢复的充分必要条件,为所提方法的有效性提供了理论保证。文中通过仿真实验与真实数据案例验证了所提方法的性能。