Federated Learning is a machine learning paradigm where we aim to train machine learning models in a distributed fashion. Many clients/edge devices collaborate with each other to train a single model on the central. Clients do not share their own datasets with each other, decoupling computation and data on the same device. In this paper, we propose yet another adaptive federated optimization method and some other ideas in the field of federated learning. We also perform experiments using these methods and showcase the improvement in the overall performance of federated learning.


翻译:联邦学习是一种机器学习模式,我们的目标是以分布式方式培训机器学习模式,许多客户/尖端设备相互协作,在中央一级培训单一模式,客户不相互共享自己的数据集,不将计算和数据分离在同一设备上。在本文件中,我们提出了另一个适应性联合优化方法和联邦学习领域的其他一些想法。我们还利用这些方法进行实验,并展示了联邦学习总体绩效的改善。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Top
微信扫码咨询专知VIP会员