A method to apply and visualize persistent homology of time series is proposed. The method captures persistent features in space and time, in contrast to the existing procedures, where one usually chooses one while keeping the other fixed. An extended zigzag module that is built from a time series is defined. This module combines ideas from zigzag persistent homology and multiparameter persistent homology. Persistence landscapes are defined for the case of extended zigzag modules using a recent generalization of the rank invariant (Kim, M\'emoli, 2021). This new invariant is called spatiotemporal persistence landscapes. Under certain finiteness assumptions, spatiotemporal persistence landscapes are a family of functions that take values in Lebesgue spaces, endowing the space of persistence landscapes with a distance. Stability of this invariant is shown with respect to an adapted interleaving distance for extended zigzag modules. Being an invariant that takes values in a Banach space, spatiotemporal persistence landscapes can be used for statistical analysis as well as for input to machine learning algorithms.


翻译:暂无翻译

1
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
14+阅读 · 2022年10月15日
Disentangled Information Bottleneck
Arxiv
12+阅读 · 2020年12月22日
Arxiv
15+阅读 · 2020年2月5日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
Arxiv
22+阅读 · 2018年2月14日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
14+阅读 · 2022年10月15日
Disentangled Information Bottleneck
Arxiv
12+阅读 · 2020年12月22日
Arxiv
15+阅读 · 2020年2月5日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
Arxiv
22+阅读 · 2018年2月14日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员