The DAF-MIT AI Accelerator is a collaboration between the United States Department of the Air Force (DAF) and the Massachusetts Institute of Technology (MIT). This program pioneers fundamental advances in artificial intelligence (AI) to expand the competitive advantage of the United States in the defense and civilian sectors. In recent years, AI Accelerator projects have developed and launched public challenge problems aimed at advancing AI research in priority areas. Hallmarks of AI Accelerator challenges include large, publicly available, and AI-ready datasets to stimulate open-source solutions and engage the wider academic and private sector AI ecosystem. This article supplements our previous publication, which introduced AI Accelerator challenges. We provide an update on how ongoing and new challenges have successfully contributed to AI research and applications of AI technologies.


翻译:DAF-MIT人工智能加速器是美国空军部(DAF)与麻省理工学院(MIT)之间的合作项目。该计划旨在推动人工智能(AI)基础研究的突破性进展,以增强美国在国防和民用领域的竞争优势。近年来,人工智能加速器项目已开发并发布了多项公开挑战问题,旨在促进优先领域的人工智能研究。这些挑战的显著特征包括提供大规模、公开可用且适配人工智能处理的数据集,以激励开源解决方案,并吸引更广泛的学术界和私营部门人工智能生态系统参与。本文是对先前介绍人工智能加速器挑战的出版物的补充。我们进一步更新了当前及新增挑战如何成功推动人工智能研究及其技术应用的最新进展。

0
下载
关闭预览

相关内容

深入学习的成功来自于三个方面:高效的算法、强大的硬件和大规模的数据集。我们的实验室针对前两个方面,麻省理工学院汉实验室正在寻找有动机的学生在深入学习和计算机架构领域来解决有影响的人工智能问题,具有较轻的模型和较高的计算效率。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
11+阅读 · 2019年6月19日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员