People can produce drawings of specific entities (e.g., Garfield), as well as general categories (e.g., "cat"). What explains this ability to produce such varied drawings of even highly familiar object concepts? We hypothesized that drawing objects at different levels of abstraction depends on both sensory information and representational goals, such that drawings intended to portray a recently seen object preserve more detail than those intended to represent a category. Participants drew objects cued either with a photo or a category label. For each cue type, half the participants aimed to draw a specific exemplar; the other half aimed to draw the category. We found that label-cued category drawings were the most recognizable at the basic level, whereas photo-cued exemplar drawings were the least recognizable. Together, these findings highlight the importance of task context for explaining how people use drawings to communicate visual concepts in different ways.


翻译:人们可以制作特定实体(例如Garfield)的图纸,以及一般类别(例如“猫”)的图纸。为什么这种制作甚至非常熟悉的物体概念的各种图纸的能力?我们假设,不同程度的抽象绘图对象取决于感官信息和表述目标,因此,旨在描绘最近看到的物体的图纸比代表某一类别的图画更加详细。与会者绘制了带有照片或类别标签的物件。对于每一个提示类型,一半的参与者旨在绘制一个特定的示例;另一半旨在绘制类别。我们发现,标签标的类别图纸在基本层面是最可识别的,而光标的exmpurar图画则最难以识别。这些发现共同强调了任务背景的重要性,以解释人们如何使用图纸以不同方式交流视觉概念。

0
下载
关闭预览

相关内容

【ICML2020】多视角对比图表示学习,Contrastive Multi-View GRL
专知会员服务
80+阅读 · 2020年6月11日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
32+阅读 · 2019年10月16日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
10+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Arxiv
0+阅读 · 2021年8月5日
Arxiv
6+阅读 · 2018年2月8日
VIP会员
相关资讯
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
10+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
相关论文
Top
微信扫码咨询专知VIP会员