Superpixels are higher-order perceptual groups of pixels in an image, often carrying much more information than the raw pixels. There is an inherent relational structure to the relationship among different superpixels of an image such as adjacent superpixels are neighbours of each other. Our interest here is to treat these relative positions of various superpixels as relational information of an image. This relational information can convey higher-order spatial information about the image, such as the relationship between superpixels representing two eyes in an image of a cat. That is, two eyes are placed adjacent to each other in a straight line or the mouth is below the nose. Our motive in this paper is to assist computer vision models, specifically those based on Deep Neural Networks (DNNs), by incorporating this higher-order information from superpixels. We construct a hybrid model that leverages (a) Convolutional Neural Network (CNN) to deal with spatial information in an image and (b) Graph Neural Network (GNN) to deal with relational superpixel information in the image. The proposed model is learned using a generic hybrid loss function. Our experiments are extensive, and we evaluate the predictive performance of our proposed hybrid vision model on seven different image classification datasets from a variety of domains such as digit and object recognition, biometrics, medical imaging. The results demonstrate that the relational superpixel information processed by a GNN can improve the performance of a standard CNN-based vision system.


翻译:超级像素是图像中更高层次的像素感知组, 通常携带的信息比原始像素要多得多。 与相邻的超级像素等图像的不同超级像素之间的关系有着内在的关系结构。 我们在这里的利益是将这些超级像素的相对位置作为图像的相近信息处理。 这种关联信息可以传递图像上更高层次的空间信息, 如在猫的图像中代表两只眼睛的超级像素之间的关系。 也就是说, 两只眼睛被放在直线上或嘴部下。 我们本文的动机是协助计算机视觉模型, 特别是基于深神经网络的模型。 我们在这里的利益是将这些更高层次的超级像素的相对位置作为图像的相近信息。 我们建立一个混合模型, (a) 革命神经网络(CNN) 用来在图像中处理空间信息, (b) 图形神经网络(GNNN) 用来处理图像中关联的超级像像素信息。 我们提议的模型的模型是使用一个不同的混合的模型, 模拟的模型, 用来用来对图像的模型进行我们模型的模型的模型的模型进行模拟化化化化化。 我们的模型的模型的模型的模型的模型的模型, 正在用一个不同的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模拟的模拟的模拟的模拟的模型的模拟的模型的模型的模型, 。 。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
158+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
12+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2021年6月14日
Arxiv
16+阅读 · 2021年1月27日
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
Arxiv
12+阅读 · 2019年3月14日
Arxiv
31+阅读 · 2018年11月13日
VIP会员
相关资讯
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
12+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员