Chain-of-Thought (CoT) is widely applied to improve the LLM capability in math, coding and reasoning tasks. However, its performance is limited for open-domain tasks since there are no clearly defined reasoning steps or logical transitions. To mitigate such challenges, we propose another prompt-based paradigm called Chain of Conceptual Thought (CoCT), where the LLM first tags a concept, then generates the detailed content. The chain of concepts is allowed within the utterance, encouraging the LLM's deep and strategic thinking. We experiment with this paradigm in daily and emotional support conversations where the concept is comprised of emotions, strategies and topics. Automatic, human and model evaluations suggest that CoCT surpasses baselines such as Self-Refine, ECoT, ToT, SoT and RAG, suggesting a potential effective prompt-based paradigm of LLM for a wider scope of tasks.


翻译:思维链(CoT)被广泛应用于提升大型语言模型在数学、编码和推理任务中的能力。然而,对于开放域任务,由于缺乏明确定义的推理步骤或逻辑转换,其性能受到限制。为缓解此类挑战,我们提出另一种基于提示的范式,称为概念链式思考(CoCT),其中大型语言模型首先标注一个概念,然后生成详细内容。概念链被允许在话语内部形成,从而鼓励大型语言模型进行深度和策略性思考。我们在日常对话和情感支持对话中对此范式进行了实验,其中概念由情感、策略和主题构成。自动评估、人工评估和模型评估均表明,CoCT超越了诸如自我优化、ECoT、ToT、SoT和RAG等基线方法,这表明基于提示的LLM范式在更广泛的任务范围内具有潜在的有效性。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
58+阅读 · 2019年7月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员