Agents that learn to select optimal actions represent a prominent focus of the sequential decision-making literature. In the face of a complex environment or constraints on time and resources, however, aiming to synthesize such an optimal policy can become infeasible. These scenarios give rise to an important trade-off between the information an agent must acquire to learn and the sub-optimality of the resulting policy. While an agent designer has a preference for how this trade-off is resolved, existing approaches further require that the designer translate these preferences into a fixed learning target for the agent. In this work, leveraging rate-distortion theory, we automate this process such that the designer need only express their preferences via a single hyperparameter and the agent is endowed with the ability to compute its own learning targets that best achieve the desired trade-off. We establish a general bound on expected discounted regret for an agent that decides what to learn in this manner along with computational experiments that illustrate the expressiveness of designer preferences and even show improvements over Thompson sampling in identifying an optimal policy.


翻译:学会选择最佳行动的代理商代表了顺序决策文献的突出焦点。然而,面对复杂的环境或时间和资源的制约,旨在综合这种最佳政策的目标可能变得不可行。这些假设在代理商必须获得的信息和由此产生的政策的次优性之间产生了重要的权衡。虽然代理商设计师偏好如何解决这一权衡,但现有办法进一步要求设计师将这些偏好转化为代理人的固定学习目标。在这项工作中,我们利用率扭曲理论,使这一过程自动化,使设计师只需通过单倍超准度来表达其偏好,而代理商具有能力来计算自己的学习目标,从而最能实现理想的权衡。我们规定,对于决定以这种方式学习内容的代理商,在进行计算实验以说明设计师偏好的明确性,甚至表明在确定最佳政策方面比汤普森抽样有所改进。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年7月15日
专知会员服务
37+阅读 · 2021年4月27日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
105+阅读 · 2020年5月3日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
270+阅读 · 2019年10月9日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
196+阅读 · 2019年9月30日
已删除
将门创投
4+阅读 · 2020年6月12日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月21日
VIP会员
相关VIP内容
专知会员服务
31+阅读 · 2021年7月15日
专知会员服务
37+阅读 · 2021年4月27日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
105+阅读 · 2020年5月3日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
270+阅读 · 2019年10月9日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
196+阅读 · 2019年9月30日
相关资讯
已删除
将门创投
4+阅读 · 2020年6月12日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员