Surface wettability is a critical design parameter for biomedical devices, coatings, and textiles. Contact angle measurements quantify liquid-surface interactions, which depend strongly on liquid formulation. Herein, we present the Robotic Autonomous Imaging Surface Evaluator (RAISE), a closed-loop, self-driving laboratory that is capable of linking liquid formulation optimization with surface wettability assessment. RAISE comprises a full experimental orchestrator with the ability of mixing liquid ingredients to create varying formulation cocktails, transferring droplets of prepared formulations to a high-throughput stage, and using a pick-and-place camera tool for automated droplet image capture. The system also includes an automated image processing pipeline to measure contact angles. This closed loop experiment orchestrator is integrated with a Bayesian Optimization (BO) client, which enables iterative exploration of new formulations based on previous contact angle measurements to meet user-defined objectives. The system operates in a high-throughput manner and can achieve a measurement rate of approximately 1 contact angle measurement per minute. Here we demonstrate RAISE can be used to explore surfactant wettability and how surfactant combinations create tunable formulations that compensate for purity-related variations. Furthermore, multi-objective BO demonstrates how precise and optimal formulations can be reached based on application-specific goals. The optimization is guided by a desirability score, which prioritizes formulations that are within target contact angle ranges, minimize surfactant usage and reduce cost. This work demonstrates the capabilities of RAISE to autonomously link liquid formulations to contact angle measurements in a closed-loop system, using multi-objective BO to efficiently identify optimal formulations aligned with researcher-defined criteria.
翻译:暂无翻译