In this article, we show that the algorithm of maintaining expander decompositions in graphs undergoing edge deletions directly by removing sparse cuts repeatedly can be made efficient. Formally, for an $m$-edge undirected graph $G$, we say a cut $(S, \overline{S})$ is $\phi$-sparse if $|E_G(S, \overline{S})| < \phi \cdot \min\{vol_G(S), vol_G(\overline{S})\}$. A $\phi$-expander decomposition of $G$ is a partition of $V$ into sets $X_1, X_2, \ldots, X_k$ such that each cluster $G[X_i]$ contains no $\phi$-sparse cut (meaning it is a $\phi$-expander) with $\tilde{O}(\phi m)$ edges crossing between clusters. A natural way to compute a $\phi$-expander decomposition is to decompose clusters by $\phi$-sparse cuts until no such cut is contained in any cluster. We show that even in graphs undergoing edge deletions, a slight relaxation of this meta-algorithm can be implemented efficiently with amortized update time $m^{o(1)}/\phi^2$. Our approach naturally extends to maintaining directed $\phi$-expander decompositions and $\phi$-expander hierarchies and thus gives a unifying framework while having simpler proofs than previous state-of-the-art work. In all settings, our algorithm matches the run-times of previous algorithms up to subpolynomial factors. Moreover, our algorithm provides stronger guarantees for $\phi$-expander decompositions. For example, for graphs undergoing edge deletions, our approach is the first to maintain a dynamic expander decomposition where each updated decomposition is a refinement of the previous decomposition, and our approach is the first to guarantee a sublinear $\phi m^{1+o(1)}$ bound on the total number of edges that cross between clusters across the entire sequence of dynamic updates.
翻译:在此文章中, 我们显示, 在正直接删除的平面图中维护扩展器分解的算法可以通过反复删除稀少的削减来提高效率 。 形式上, 对于一个以美元为顶尖的非方向的平面图$G$, 我们说, 如果$E_ G( S,\ overline{S}) 美元为美元, 以美元为顶端的平面, 以美元为底端, 以美元为底端的平面, 以美元为底端。 以美元为底端的平面法, 以美元为底端的平面法, 以美元为底端的平面法, 以美元为底端的平面法, 以美元為底端的平面法, 以平面為底端的平面法, 以平面為底色的平面機格, 以平面的平面的平面法, 以平面的平面為底色的平面, 以平面的平面為底色的平面的平面, 以平面的平面為底面的平面的平面, 。 平面的平面, 平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面,,, 以平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面, 。