In the 1970s, structural Ramsey theory emerged as a new branch of combinatorics. This development came with the isolation of the concepts of the $\mathbf{A}$-Ramsey property and Ramsey class. Following the influential Ne\v{s}et\v{r}il-R\"odl theorem, several Ramsey classes have been identified. In the 1980s, Ne\v{s}et\v{r}il, inspired by a seminar of Lachlan, discovered a crucial connection between Ramsey classes and Fra\"iss\'e classes, and, in his 1989 paper, connected the classification programme of homogeneous structures to structural Ramsey theory. In 2005, Kechris, Pestov, and Todor\v{c}evi\'c revitalized the field by connecting Ramsey classes to topological dynamics. This breakthrough motivated Ne\v{s}et\v{r}il to propose a program for classifying Ramsey classes. We review the progress made on this program in the past two decades, list open problems, and discuss recent extensions to new areas, namely the extension property for partial automorphisms (EPPA), and big Ramsey structures.
翻译:20 世纪 70 年代,结构 Ramsey 理论作为组合数学的一个新分支兴起。这一发展伴随着 $\mathbf{A}$-Ramsey 性质和 Ramsey 类概念的提出。在具有影响力的 Nešetřil-Rödl 定理之后,多个 Ramsey 类被识别出来。20 世纪 80 年代,Nešetřil 受 Lachlan 研讨会的启发,发现了 Ramsey 类与 Fraïssé 类之间的关键联系,并在其 1989 年的论文中将齐次结构的分类计划与结构 Ramsey 理论联系起来。2005 年,Kechris、Pestov 和 Todorčević 通过将 Ramsey 类与拓扑动力学相联系,重振了这一领域。这一突破促使 Nešetřil 提出了一个分类 Ramsey 类的研究计划。本文回顾了过去二十年该计划取得的进展,列举了未解决的问题,并讨论了近期向新领域的扩展,即部分自同构的扩展性质(EPPA)和大 Ramsey 结构。