Automatic forecasting is the task of receiving a time series and returning a forecast for the next time steps without any human intervention. Gaussian Processes (GPs) are a powerful tool for modeling time series, but so far there are no competitive approaches for automatic forecasting based on GPs. We propose practical solutions to two problems: automatic selection of the optimal kernel and reliable estimation of the hyperparameters. We propose a fixed composition of kernels, which contains the components needed to model most time series: linear trend, periodic patterns, and other flexible kernel for modeling the non-linear trend. Not all components are necessary to model each time series; during training the unnecessary components are automatically made irrelevant via automatic relevance determination (ARD). We moreover assign priors to the hyperparameters, in order to keep the inference within a plausible range; we design such priors through an empirical Bayes approach. We present results on many time series of different types; our GP model is more accurate than state-of-the-art time series models. Thanks to the priors, a single restart is enough the estimate the hyperparameters; hence the model is also fast to train.


翻译:自动预测是接收一个时间序列并返回下一个时间步骤的预测的任务。 Gossian processes (GPs) 是模拟时间序列的有力工具, 但到目前为止还没有基于GP的自动预测的竞争性方法。 我们为两个问题提出了切实可行的解决办法: 自动选择最佳内核和可靠估计超参数。 我们提出一个固定的内核组成, 其中包括模型最短时间序列所需的组件: 线性趋势、 定期模式和用于模拟非线性趋势的其他灵活内核。 并不是每个时间序列都需要所有组成部分的模型; 在培训过程中, 通过自动确定相关性( ARD) 自动使不必要的部件变得不相干。 我们还指定了超参数之前的参数, 以便将推断保持在一个合理的范围内; 我们通过经验性海湾方法设计这样的前数。 我们提出不同类型许多时间序列的结果; 我们的GP模型比最新时间序列模型更精确。 由于前几次, 单次重电压模型也足够快速。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
145+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Forecast with Forecasts: Diversity Matters
Arxiv
0+阅读 · 2021年8月19日
Arxiv
6+阅读 · 2018年3月28日
VIP会员
相关资讯
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Top
微信扫码咨询专知VIP会员