Rotation augmentations generally improve a model's invariance/equivariance to rotation - except in object detection. In object detection the shape is not known, therefore rotation creates a label ambiguity. We show that the de-facto method for bounding box label rotation, the Largest Box Method, creates very large labels, leading to poor performance and in many cases worse performance than using no rotation at all. We propose a new method of rotation augmentation that can be implemented in a few lines of code. First, we create a differentiable approximation of label accuracy and show that axis-aligning the bounding box around an ellipse is optimal. We then introduce Rotation Uncertainty (RU) Loss, allowing the model to adapt to the uncertainty of the labels. On five different datasets (including COCO, PascalVOC, and Transparent Object Bin Picking), this approach improves the rotational invariance of both one-stage and two-stage architectures when measured with AP, AP50, and AP75. The code is available at \url{https://github.com/akasha-imaging/ICCV2021}.
翻译:旋转增强通常会改善模型的惯性/ 等值旋转, 但物体检测除外。 在对象检测中, 形状未知, 因此旋转会产生标签模糊性。 我们显示, 绑定框标签旋转的脱法方法, 最大框法, 产生非常大的标签, 导致性能差, 在许多情况下, 性能比没有旋转更差。 我们提出了一个新的旋转增强方法, 可以在几行代码中实施 。 首先, 我们创建了标签准确性的不同近似值, 并显示在椭圆周围的捆绑盒轴对齐是最佳的。 我们随后引入了旋转不确定性( RU), 让模型适应标签的不确定性。 在五个不同的数据集( 包括COCO, PascalVOC, PascalVOC, 和透明对象bin Picking) 中, 这种方法可以改善与 AP、 AP50 和 AP75 AP20 测量时的一阶和两阶层结构的轮值。 该代码可以在 URL {https://github. com/ akashashasha/ mageing.