In this paper, we consider the convertible code with locally repairable property. We present an improved lower bound on access cost associated with $(r,δ)$. Then, we provide a general construction of convertible codes with optimal access cost which shows that those codes can be with super-linear length or maximum repairable property. Additionally, employing the known locally repairable codes with super-linear length or maximum repairable property, we provide explicit constructions of convertible codes with super-linear length or maximum repairable property.
翻译:本文研究了具有局部可修复性质的可转换码。我们提出了关于$(r,δ)$相关访问成本的改进下界。随后,我们给出了一种具有最优访问成本的可转换码通用构造方法,证明此类码可以具有超线性长度或最大可修复性质。此外,通过采用已知的具有超线性长度或最大可修复性质的局部可修复码,我们给出了具有超线性长度或最大可修复性质的可转换码的显式构造。