Software development is undergoing a fundamental transformation as vibe coding becomes widespread, with large portions of contemporary codebases now being generated by Artificial Intelligence (AI). The disconnect between rapid adoption and limited conceptual understanding highlights the need for an inquiry into this emerging paradigm. Drawing on an intent perspective and historical analysis, we define vibe coding as a software development paradigm where humans and Generative AI (GenAI) engage in collaborative flow to co-create software artifacts through natural language dialogue, shifting the mediation of developer intent from deterministic instruction to probabilistic inference. By intent mediation, we refer to the fundamental process through which developers translate their conceptual goals into representations that computational systems can execute. Our results show that vibe coding redistributes epistemic labor between humans and machines, shifting expertise from technical implementation toward collaborative orchestration. We identify key opportunities, including democratization, acceleration, and systemic leverage, alongside risks such as black-box codebases, responsibility gaps, and ecosystem bias. We conclude with a research agenda spanning human-, technology-, and organization-centered directions to guide future investigations of this paradigm.


翻译:随着氛围编码的广泛普及,软件开发正在经历根本性变革,当代代码库的很大部分现已由人工智能(AI)生成。快速采用与有限概念理解之间的脱节凸显了对这一新兴范式进行探究的必要性。基于意图视角与历史分析,我们将氛围编码定义为一种软件开发范式,其中人类与生成式人工智能(GenAI)通过自然语言对话进行协作流,共同创建软件制品,将开发者意图的中介从确定性指令转向概率性推断。意图中介指的是开发者将其概念性目标转化为计算系统可执行表示的基本过程。我们的研究结果表明,氛围编码重新分配了人类与机器之间的认知劳动,将专业知识从技术实现转向协作编排。我们识别出关键机遇,包括民主化、加速和系统杠杆作用,同时指出诸如黑箱代码库、责任缺口和生态系统偏见等风险。最后,我们提出了涵盖以人为中心、以技术为中心和以组织为中心方向的研究议程,以指导未来对该范式的探索。

0
下载
关闭预览

相关内容

软件(中国大陆及香港用语,台湾作软体,英文:Software)是一系列按照特定顺序组织的计算机数据和指令的集合。一般来讲软件被划分为编程语言、系统软件、应用软件和介于这两者之间的中间件。软件就是程序加文档的集合体。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员