This paper studies Flag sequences for low-complexity delay-Doppler estimation by exploiting their distinctive peak-curtain ambiguity functions (AFs). Unlike the existing Flag sequence designs that are limited to prime lengths and periodic auto-AFs, we aim to design Flag sequence sets of arbitrary lengths with low (nontrivial) periodic/aperiodic auto- and cross-AFs. Since every Flag sequence consists of a Curtain sequence and a Peak sequence, we first investigate the algebraic design of Curtain sequence sets of arbitrary lengths. Our proposed design gives rise to novel Curtain sequence sets with ideal curtain auto-AFs and zero/near-zero cross-AFs within the delay-Doppler zone of operation. Leveraging these Curtain sequence sets, two optimization problems are formulated to minimize the Weighted Integrated masked Sidelobe Level (WImSL) of the Flag sequence set. Accelerated Parallel Partially Majorization-Minimization Algorithms are proposed to jointly optimize the transmit Flag sequences and symmetric/asymmetric reference sequences stored in the receiver. Simulations demonstrate that our proposed Flag sequences lead to improved WImSL and peak-to-max-masked-sidelobe ratio compared with the existing Flag sequences. Additionally, our Flag sequences under the Flag method exhibit Mean Squared Errors that approach the Cram\'er-Rao Lower Bound and the Sampling Bound at high signal-to-noise power ratios.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员