This paper studies the numerical approximation of the ground state of rotating Bose--Einstein condensates, formulated as the minimization of the Gross--Pitaevskii energy functional under a mass conservation constraint. To solve this problem, we consider three Sobolev gradient flow schemes: the $H_0^1$ scheme, the $a_0$ scheme, and the $a_u$ scheme. Convergence of these schemes in the non-rotating case was established by Chen et al., and the rotating $a_u$ scheme was analyzed in Henning et al. In this work, we prove the global convergence of the $H_0^1$ and $a_0$ schemes in the rotating case, and establish local linear convergence for all three schemes near the ground state. Numerical experiments confirm our theoretical findings.
翻译:本文研究了旋转玻色-爱因斯坦凝聚体基态的数值逼近问题,该问题可表述为在质量守恒约束下Gross-Pitaevskii能量泛函的最小化。为解决此问题,我们考虑三种Sobolev梯度流格式:$H_0^1$格式、$a_0$格式和$a_u$格式。Chen等人已证明这些格式在非旋转情况下的收敛性,而Henning等人则分析了旋转$a_u$格式。本工作中,我们证明了旋转情况下$H_0^1$格式与$a_0$格式的全局收敛性,并建立了所有三种格式在基态附近的局部线性收敛性。数值实验验证了我们的理论结果。