We develop a computational framework for classifying Galois groups of irreducible degree-7 polynomials over~$\mathbb{Q}$, combining explicit resolvent methods with machine learning techniques. A database of over one million normalized projective septics is constructed, each annotated with algebraic invariants~$J_0, \dots, J_4$ derived from binary transvections. For each polynomial, we compute resolvent factorizations to determine its Galois group among the seven transitive subgroups of~$S_7$ identified by Foulkes. Using this dataset, we train a neurosymbolic classifier that integrates invariant-theoretic features with supervised learning, yielding improved accuracy in detecting rare solvable groups compared to coefficient-based models. The resulting database provides a reproducible resource for constructive Galois theory and supports empirical investigations into group distribution under height constraints. The methodology extends to higher-degree cases and illustrates the utility of hybrid symbolic-numeric techniques in computational algebra.


翻译:我们开发了一个计算框架,用于分类有理数域上不可约七次多项式的伽罗瓦群,将显式预解式方法与机器学习技术相结合。构建了一个包含超过一百万归一化投影七次多项式的数据库,每个多项式均标注有从二元转置导出的代数不变量~$J_0, \dots, J_4$。针对每个多项式,我们计算预解式因式分解以确定其伽罗瓦群,该群属于Foulkes所识别的~$S_7$的七个可迁子群之一。利用该数据集,我们训练了一个神经符号分类器,该分类器将不变量理论特征与监督学习相融合,相比基于系数的模型,在检测罕见可解群方面实现了更高的准确率。所得数据库为构造性伽罗瓦理论提供了可复现的资源,并支持在高度约束下对群分布进行实证研究。该方法可推广至高次情形,并展示了混合符号-数值技术在计算代数中的实用性。

0
下载
关闭预览

相关内容

数据库( Database )或数据库管理系统( Database management systems )是按照数据结构来组织、存储和管理数据的仓库。目前数据管理不再仅仅是存储和管理数据,而转变成用户所需要的各种数据管理的方式。
【ICML2024】基于正则化的持续学习的统计理论
专知会员服务
20+阅读 · 2024年6月11日
《用于代码弱点识别的 LLVM 中间表示》CMU
专知会员服务
14+阅读 · 2022年12月12日
【NeurIPS2021】序一致因果图的多任务学习
专知会员服务
20+阅读 · 2021年11月7日
专知会员服务
15+阅读 · 2021年9月11日
【NeurIPS2020】可处理的反事实推理的深度结构因果模型
专知会员服务
49+阅读 · 2020年9月28日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 12月16日
VIP会员
相关VIP内容
【ICML2024】基于正则化的持续学习的统计理论
专知会员服务
20+阅读 · 2024年6月11日
《用于代码弱点识别的 LLVM 中间表示》CMU
专知会员服务
14+阅读 · 2022年12月12日
【NeurIPS2021】序一致因果图的多任务学习
专知会员服务
20+阅读 · 2021年11月7日
专知会员服务
15+阅读 · 2021年9月11日
【NeurIPS2020】可处理的反事实推理的深度结构因果模型
专知会员服务
49+阅读 · 2020年9月28日
相关资讯
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员