In this paper, we study the trace regression when a matrix of parameters B* is estimated via convex relaxation of a rank-penalized regression or via non-convex optimization. It is known that these estimators satisfy near-optimal error bounds under assumptions on rank, coherence, or spikiness of B*. We start by introducing a general notion of spikiness for B* that provides a generic recipe to prove restricted strong convexity for the sampling operator of the trace regression and obtain near-optimal and non-asymptotic error bounds for the estimation error. Similar to the existing literature, these results require the penalty parameter to be above a certain theory-inspired threshold that depends on the observation noise and the sampling operator which may be unknown in practice. Next, we extend the error bounds to the cases when the regularization parameter is chosen via cross-validation. This result is significant in that existing theoretical results on cross-validated estimators do not apply to our setting since the estimators we study are not known to satisfy their required notion of stability. Finally, using simulations on synthetic and real data, we show that the cross-validated estimator selects a nearly-optimal penalty parameter and outperforms the theory-inspired approach of selecting the parameter.


翻译:在本文中, 我们研究参数 B* 矩阵通过降压降压或非调和优化来估计参数 B* 矩阵时的痕量回归值。 已知这些估计值根据对B* 的等级、 一致性或浮度的假设,符合接近最佳的误差界限。 我们首先对B* 引入一个一般的浮度概念, 提供一种通用的配方, 证明微量回归的取样操作员具有有限的强度共性, 并获得近于最佳的和不失色的误差来估计误差。 与现有文献类似, 这些结果要求处罚参数高于某些理论启发的阈值, 取决于观测噪音和取样操作中可能未知的取样操作员。 下一步, 我们将误差扩大到通过交叉校准参数来选择规范参数时的情况。 其结果是, 由于我们研究的估定值无法满足其所要求的稳定性概念, 因而现有理论结果不适用于我们的设置。 最后, 使用模拟的合成和真实的比值性参数, 选择模型, 展示了合成和真实的比值方法 。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员