Computed Tomography (CT) is a prominent example of Imaging Inverse Problem highlighting the unrivaled performances of data-driven methods in degraded measurements setups like sparse X-ray projections. Although a significant proportion of deep learning approaches benefit from large supervised datasets, they cannot generalize to new experimental setups. In contrast, fully unsupervised techniques, most notably using score-based generative models, have recently demonstrated similar or better performances compared to supervised approaches while being flexible at test time. However, their use cases are limited as they need considerable amounts of training data to have good generalization properties. Another unsupervised approach taking advantage of the implicit natural bias of deep convolutional networks, Deep Image Prior, has recently been adapted to solve sparse CT by reparameterizing the reconstruction problem. Although this methodology does not require any training dataset, it enforces a weaker prior on the reconstructions when compared to data-driven methods. To fill the gap between these two strategies, we propose an unsupervised conditional approach to the Generative Latent Optimization framework (cGLO). Similarly to DIP, without any training dataset, cGLO benefits from the structural bias of a decoder network. However, the prior is further reinforced as the effect of a likelihood objective shared between multiple slices being reconstructed simultaneously through the same decoder network. In addition, the parameters of the decoder may be initialized on an unsupervised, and eventually very small, training dataset to enhance the reconstruction. The resulting approach is tested on full-dose sparse-view CT using multiple training dataset sizes and varying numbers of viewing angles.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Arxiv
11+阅读 · 2018年4月8日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员