Classical regression models do not cover non-Euclidean data that reside in a general metric space, while the current literature on non-Euclidean regression by and large has focused on scenarios where either predictors or responses are random objects, i.e., non-Euclidean, but not both. In this paper we propose geodesic optimal transport regression models for the case where both predictors and responses lie in a common geodesic metric space and predictors may include not only one but also several random objects. This provides an extension of classical multiple regression to the case where both predictors and responses reside in non-Euclidean metric spaces, a scenario that has not been considered before. It is based on the concept of optimal geodesic transports, which we define as an extension of the notion of optimal transports in distribution spaces to more general geodesic metric spaces, where we characterize optimal transports as transports along geodesics. The proposed regression models cover the relation between non-Euclidean responses and vectors of non-Euclidean predictors in many spaces of practical statistical interest. These include one-dimensional distributions viewed as elements of the 2-Wasserstein space and multidimensional distributions with the Fisher-Rao metric that are represented as data on the Hilbert sphere. Also included are data on finite-dimensional Riemannian manifolds, with an emphasis on spheres, covering directional and compositional data, as well as data that consist of symmetric positive definite matrices. We illustrate the utility of geodesic optimal transport regression with data on summer temperature distributions and human mortality.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年2月11日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
14+阅读 · 2018年5月15日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2024年2月11日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
14+阅读 · 2018年5月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员