High covariate dimensionality is increasingly occurrent in model estimation, and existing techniques to address this issue typically require sparsity or discrete heterogeneity of the unobservable parameter vector. However, neither restriction may be supported by economic theory in some empirical contexts, leading to severe bias and misleading inference. The clustering-based grouped parameter estimator (GPE) introduced in this paper drops both restrictions in favour of the natural one that the parameter support be compact. GPE exhibits robust large sample properties under standard conditions and accommodates both sparse and non-sparse parameters whose support can be bounded away from zero. Extensive Monte Carlo simulations demonstrate the excellent performance of GPE in terms of bias reduction and size control compared to competing estimators. An empirical application of GPE to estimating price and income elasticities of demand for gasoline highlights its practical utility.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年9月20日
Disentangled Information Bottleneck
Arxiv
12+阅读 · 2020年12月22日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
12+阅读 · 2019年2月26日
Arxiv
22+阅读 · 2018年2月14日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2023年9月20日
Disentangled Information Bottleneck
Arxiv
12+阅读 · 2020年12月22日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
12+阅读 · 2019年2月26日
Arxiv
22+阅读 · 2018年2月14日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员