Since its inception, Rowhammer exploits have rapidly evolved into increasingly sophisticated threats not only compromising data integrity but also the control flow integrity of victim processes. Nevertheless, it remains a challenge for an attacker to identify vulnerable targets (i.e., Rowhammer gadgets), understand the outcome of the attempted fault, and formulate an attack that yields useful results. In this paper, we present a new type of Rowhammer gadget, called a LeapFrog gadget, which, when present in the victim code, allows an adversary to subvert code execution to bypass a critical piece of code (e.g., authentication check logic, encryption rounds, padding in security protocols). The Leapfrog gadget manifests when the victim code stores the Program Counter (PC) value in the user or kernel stack (e.g., a return address during a function call) which, when tampered with, re-positions the return address to a location that bypasses a security-critical code pattern. This research also presents a systematic process to identify Leapfrog gadgets. This methodology enables the automated detection of susceptible targets and the determination of optimal attack parameters. We first showcase this new attack vector through a practical demonstration on a TLS handshake client/server scenario, successfully inducing an instruction skip in a client application. We then demonstrate the attack on real-world code found in the wild, implementing an attack on OpenSSL. Our findings extend the impact of Rowhammer attacks on control flow and contribute to the development of more robust defenses against these increasingly sophisticated threats.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
24+阅读 · 2024年2月23日
Arxiv
23+阅读 · 2023年3月8日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
24+阅读 · 2024年2月23日
Arxiv
23+阅读 · 2023年3月8日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员