Counterfactual explanations (CFEs) are minimal and semantically meaningful modifications of the input of a model that alter the model predictions. They highlight the decisive features the model relies on, providing contrastive interpretations for classifiers. State-of-the-art visual counterfactual explanation methods are designed to explain image classifiers. The generation of CFEs for video classifiers remains largely underexplored. For the counterfactual videos to be useful, they have to be physically plausible, temporally coherent, and exhibit smooth motion trajectories. Existing CFE image-based methods, designed to explain image classifiers, lack the capacity to generate temporally coherent, smooth and physically plausible video CFEs. To address this, we propose Back To The Feature (BTTF), an optimization framework that generates video CFEs. Our method introduces two novel features, 1) an optimization scheme to retrieve the initial latent noise conditioned by the first frame of the input video, 2) a two-stage optimization strategy to enable the search for counterfactual videos in the vicinity of the input video. Both optimization processes are guided solely by the target classifier, ensuring the explanation is faithful. To accelerate convergence, we also introduce a progressive optimization strategy that incrementally increases the number of denoising steps. Extensive experiments on video datasets such as Shape-Moving (motion classification), MEAD (emotion classification), and NTU RGB+D (action classification) show that our BTTF effectively generates valid, visually similar and realistic counterfactual videos that provide concrete insights into the classifier's decision-making mechanism.
翻译:反事实解释(CFEs)是指对模型输入进行最小且语义有意义的修改,从而改变模型预测结果的方法。它们突出模型所依赖的关键特征,为分类器提供对比性解释。目前最先进的视觉反事实解释方法主要针对图像分类器设计,而视频分类器的反事实解释生成仍处于探索不足的阶段。要使反事实视频具有实用价值,其必须满足物理合理性、时间连贯性以及平滑的运动轨迹要求。现有的基于图像的反事实解释方法,由于专为解释图像分类器而设计,缺乏生成时间连贯、运动平滑且物理合理的视频反事实解释的能力。为此,我们提出“回归特征”(Back To The Feature, BTTF)优化框架,用于生成视频反事实解释。该方法引入两项创新特性:1)一种基于输入视频首帧条件约束的初始潜在噪声优化检索方案;2)一种两阶段优化策略,实现在输入视频邻近空间内搜索反事实视频。两个优化过程均仅由目标分类器引导,确保解释的忠实性。为加速收敛,我们还提出渐进式优化策略,逐步增加去噪步骤的数量。在Shape-Moving(运动分类)、MEAD(情感分类)和NTU RGB+D(动作分类)等视频数据集上的大量实验表明,我们的BTTF方法能够有效生成有效、视觉相似且逼真的反事实视频,为理解分类器的决策机制提供具体依据。