The ability to accurately estimate job runtime properties allows a scheduler to effectively schedule jobs. State-of-the-art online cluster job schedulers use history-based learning, which uses past job execution information to estimate the runtime properties of newly arrived jobs. However, with fast-paced development in cluster technology (in both hardware and software) and changing user inputs, job runtime properties can change over time, which lead to inaccurate predictions. In this paper, we explore the potential and limitation of real-time learning of job runtime properties, by proactively sampling and scheduling a small fraction of the tasks of each job. Such a task-sampling-based approach exploits the similarity among runtime properties of the tasks of the same job and is inherently immune to changing job behavior. Our study focuses on two key questions in comparing task-sampling-based learning (learning in space) and history-based learning (learning in time): (1) Can learning in space be more accurate than learning in time? (2) If so, can delaying scheduling the remaining tasks of a job till the completion of sampled tasks be more than compensated by the improved accuracy and result in improved job performance? Our analytical and experimental analysis of 3 production traces with different skew and job distribution shows that learning in space can be substantially more accurate. Our simulation and testbed evaluation on Azure of the two learning approaches anchored in a generic job scheduler using 3 production cluster job traces shows that despite its online overhead, learning in space reduces the average Job Completion Time (JCT) by 1.28x, 1.56x, and 1.32x compared to the prior-art history-based predictor.


翻译:准确估计工作运行时间属性的能力可以准确估计工作运行时间属性,从而能够有效地安排工作。 最先进的在线分组任务调度员使用基于历史的学习方法,该方法利用过去的工作执行信息来估计新到职位的运行时间属性。然而,随着集群技术(硬件和软件)和用户投入变化的快速发展,工作运行时间属性会随着时间的变化而变化,从而导致不准确的预测。 在本文件中,我们探讨实时学习工作运行时间属性的潜力和局限性,方法是主动抽样和安排每项工作的一小部分任务。这种基于任务取样的方法利用了同一工作任务的运行时间属性之间的相似性,并且本质上不受工作行为变化的影响。 但是,随着集群技术(硬件和软件)的快速发展,工作运行时间属性会随着时间的变化而变化,工作运行时间特性的变化,工作运行时间属性会随着时间的变化而变化。 如果这样,我们探索空间学习比时间上的学习更准确性,那么空间学习比时间上的学习更准确? (2) 如果这样的话,那么在抽样任务完成之前的剩余任务的时间安排可以被推迟,因为改进了职位上的准确性和结果。 1. 在改进了工作周期的模拟中,我们进行的分析和实验性分析,在学习过程的进度中可以显示, 3 学习过程的精确的进度中,我们的分析和空间分析和实验分析会显示了1 。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
CCF推荐 | 国际会议信息10条
Call4Papers
7+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Learning to See Through Obstructions
Arxiv
7+阅读 · 2020年4月2日
VIP会员
相关VIP内容
相关资讯
CCF推荐 | 国际会议信息10条
Call4Papers
7+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员