Infertility is a major global health issue, and while in-vitro fertilization has improved treatment outcomes, embryo selection remains a critical bottleneck. Time-lapse imaging enables continuous, non-invasive monitoring of embryo development, yet most automated assessment methods rely solely on conventional morphokinetic features and overlook emerging biomarkers. Cytoplasmic Strings, thin filamentous structures connecting the inner cell mass and trophectoderm in expanded blastocysts, have been associated with faster blastocyst formation, higher blastocyst grades, and improved viability. However, CS assessment currently depends on manual visual inspection, which is labor-intensive, subjective, and severely affected by detection and subtle visual appearance. In this work, we present, to the best of our knowledge, the first computational framework for CS analysis in human IVF embryos. We first design a human-in-the-loop annotation pipeline to curate a biologically validated CS dataset from TLI videos, comprising 13,568 frames with highly sparse CS-positive instances. Building on this dataset, we propose a two-stage deep learning framework that (i) classifies CS presence at the frame level and (ii) localizes CS regions in positive cases. To address severe imbalance and feature uncertainty, we introduce the Novel Uncertainty-aware Contractive Embedding (NUCE) loss, which couples confidence-aware reweighting with an embedding contraction term to form compact, well-separated class clusters. NUCE consistently improves F1-score across five transformer backbones, while RF-DETR-based localization achieves state-of-the-art (SOTA) detection performance for thin, low-contrast CS structures. The source code will be made publicly available at: https://github.com/HamadYA/CS_Detection.
翻译:不孕不育是全球性的重大健康问题,尽管体外受精技术改善了治疗结果,但胚胎选择仍是一个关键瓶颈。延时成像技术能够实现对胚胎发育的连续、无创监测,然而大多数自动化评估方法仅依赖于传统的形态动力学特征,忽视了新兴的生物标志物。细胞质丝是扩张囊胚中连接内细胞团和滋养外胚层的细丝状结构,已被证实与更快的囊胚形成速度、更高的囊胚等级以及更强的生存能力相关。然而,目前对细胞质丝的评估依赖于人工视觉检查,这种方法劳动强度大、主观性强,且极易受到检测难度和细微视觉表现的影响。本研究提出了据我们所知首个用于人类体外受精胚胎中细胞质丝分析的计算框架。我们首先设计了一个人机协同标注流程,从延时成像视频中构建了一个经过生物学验证的细胞质丝数据集,包含13,568帧图像,其中细胞质丝阳性样本极为稀疏。基于该数据集,我们提出了一个两阶段深度学习框架:(i)在帧级别分类细胞质丝的存在;(ii)在阳性案例中定位细胞质丝区域。为解决严重的数据不平衡和特征不确定性问题,我们引入了新型不确定性感知收缩嵌入损失函数,该函数将置信度感知重加权与嵌入收缩项相结合,以形成紧凑且分离良好的类别簇。该损失函数在五种Transformer骨干网络上持续提升了F1分数,同时基于RF-DETR的定位方法在细弱、低对比度的细胞质丝结构检测上达到了最先进的性能。源代码将在以下网址公开:https://github.com/HamadYA/CS_Detection。