Vision foundation models like the Segment Anything Model (SAM), pretrained on large-scale natural image datasets, often struggle in medical image segmentation due to a lack of domain-specific adaptation. In clinical practice, fine-tuning such models efficiently for medical downstream tasks with minimal resource demands, while maintaining strong performance, is challenging. To address these issues, we propose BALR-SAM, a boundary-aware low-rank adaptation framework that enhances SAM for medical imaging. It combines three tailored components: (1) a Complementary Detail Enhancement Network (CDEN) using depthwise separable convolutions and multi-scale fusion to capture boundary-sensitive features essential for accurate segmentation; (2) low-rank adapters integrated into SAM's Vision Transformer blocks to optimize feature representation and attention for medical contexts, while simultaneously significantly reducing the parameter space; and (3) a low-rank tensor attention mechanism in the mask decoder, cutting memory usage by 75% and boosting inference speed. Experiments on standard medical segmentation datasets show that BALR-SAM, without requiring prompts, outperforms several state-of-the-art (SOTA) methods, including fully fine-tuned MedSAM, while updating just 1.8% (11.7M) of its parameters.


翻译:像Segment Anything Model(SAM)这样在大规模自然图像数据集上预训练的视觉基础模型,由于缺乏领域特定适应,在医学图像分割中往往表现不佳。在临床实践中,以最小资源需求高效微调此类模型以适应医学下游任务,同时保持强大性能,是一项挑战。为解决这些问题,我们提出BALR-SAM,一个边界感知的低秩自适应框架,用于增强SAM在医学成像中的应用。它结合了三个定制组件:(1)互补细节增强网络(CDEN),利用深度可分离卷积和多尺度融合来捕获对精确分割至关重要的边界敏感特征;(2)集成到SAM视觉Transformer块中的低秩适配器,以优化医学场景下的特征表示和注意力机制,同时显著减少参数空间;(3)掩码解码器中的低秩张量注意力机制,将内存使用降低75%并提升推理速度。在标准医学分割数据集上的实验表明,BALR-SAM无需提示,性能优于包括完全微调的MedSAM在内的多种最先进方法,同时仅更新其1.8%(1170万)的参数。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Deep Learning for Generic Object Detection: A Survey
Arxiv
14+阅读 · 2018年9月6日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员