Good health and well-being is among key issues in the United Nations 2030 Sustainable Development Goals. The rising prevalence of large-scale infectious diseases and the accelerated aging of the global population are driving the transformation of healthcare technologies. In this context, establishing large-scale public health datasets, developing medical models, and creating decision-making systems with a human-centric approach are of strategic significance. Recently, by leveraging the extraordinary number of accessible cameras, groundbreaking advancements have emerged in AI methods for physiological signal monitoring and disease diagnosis using camera sensors. These approaches, requiring no specialized medical equipment, offer convenient manners of collecting large-scale medical data in response to public health events. Therefore, we outline a prospective framework and heuristic vision for a camera-based public health (CBPH) framework utilizing visual physiological monitoring technology. The CBPH can be considered as a convenient and universal framework for public health, advancing the United Nations Sustainable Development Goals, particularly in promoting the universality, sustainability, and equity of healthcare in low- and middle-income countries or regions. Furthermore, CBPH provides a comprehensive solution for building a large-scale and human-centric medical database, and a multi-task large medical model for public health and medical scientific discoveries. It has a significant potential to revolutionize personal monitoring technologies, digital medicine, telemedicine, and primary health care in public health. Therefore, it can be deemed that the outcomes of this paper will contribute to the establishment of a sustainable and fair framework for public health, which serves as a crucial bridge for advancing scientific discoveries in the realm of AI for medicine (AI4Medicine).


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员