We propose a robotic manipulation system that can pivot objects on a surface using vision, wrist force and tactile sensing. We aim to control the rotation of an object around the grip point of a parallel gripper by allowing rotational slip, while maintaining a desired wrist force profile. Our approach runs an end-effector position controller and a gripper width controller concurrently in a closed loop. The position controller maintains a desired force using vision and wrist force. The gripper controller uses tactile sensing to keep the grip firm enough to prevent translational slip, but loose enough to induce rotational slip. Our sensor-based control approach relies on matching a desired force profile derived from object dimensions and weight and vision-based monitoring of the object pose. The gripper controller uses tactile sensors to detect and prevent translational slip by tightening the grip when needed. Experimental results where the robot was tasked with rotating cuboid objects 90 degrees show that the multi-modal pivoting approach was able to rotate the objects without causing lift or slip, and was more energy-efficient compared to using a single sensor modality and to pick-and-place. While our work demonstrated the benefit of multi-modal sensing for the pivoting task, further work is needed to generalize our approach to any given object.
翻译:本文提出了一种机器人操控系统,可以使用视觉、手腕力量和触觉传感器在表面上枢转物体。我们旨在控制围绕平行夹持器夹持点旋转物体的旋转,同时保持所需的手腕力量。我们的方法同时运行夹持器位置控制器和夹持器宽度控制器,实现闭环控制。位置控制器使用视觉和手腕力量来维持所需的力量。夹持器控制器使用触觉传感器,保持夹持器紧固以防止平移滑动,并松散以限制旋转滑动。我们的传感器控制方法依赖于与物体尺寸和重量相关的所需力量曲线和基于视觉的物体姿态监测。夹持器控制器使用触觉传感器检测和防止平移滑动,有需要时会加紧夹紧。我们在实验中展示了机器人在将方体对象旋转90度的任务中的表现,结果表明多模式的转轴方法能够在不造成举起或滑动的情况下旋转物体,并且与单模态和取放法相比更节能。虽然我们的研究证明了多模态传感对于枢转任务的好处,但需要进一步研究以将我们的方法推广到任何给定的物体上。