Pilot contamination (PC) arises when the pilot sequences assigned to user equipments (UEs) are not mutually orthogonal, eventually due to their reuse. In this work, we propose a novel expectation propagation (EP)-based joint channel estimation and data detection (JCD) algorithm specifically designed to mitigate the effects of PC in the uplink of cell-free massive multiple-input multiple-output (CF-MaMIMO) systems. This modified bilinear-EP algorithm is distributed, scalable, demonstrates strong robustness to PC, and outperforms state-of-the-art Bayesian learning algorithms. Through a comprehensive performance evaluation, we assess the performance of Bayesian learning algorithms for different pilot sequences and observe that the use of non-orthogonal pilots can lead to better performance compared to shared orthogonal sequences. Motivated by this analysis, we introduce a new metric to quantify PC at the UE level. We show that the performance of the considered algorithms degrades monotonically with respect to this metric, providing a valuable theoretical and practical tool for understanding and managing PC via iterative JCD algorithms.


翻译:导频污染(PC)产生于分配给用户设备(UE)的导频序列因复用而无法保持相互正交的情况。本文提出一种基于期望传播(EP)的新型联合信道估计与数据检测(JCD)算法,专门用于抑制无小区大规模多输入多输出(CF-MaMIMO)系统上行链路中的PC效应。该改进的双线性EP算法具备分布式、可扩展特性,对PC表现出强鲁棒性,且性能优于现有贝叶斯学习算法。通过系统性性能评估,我们考察了不同导频序列下贝叶斯学习算法的表现,发现非正交导频相较于共享正交序列可能获得更优性能。基于此分析,我们提出一种量化UE层级PC的新度量指标。研究表明,所考察算法的性能随该度量值单调下降,这为通过迭代JCD算法理解和管理PC提供了有价值的理论与实用工具。

0
下载
关闭预览

相关内容

在数学和计算机科学之中,算法(Algorithm)为一个计算的具体步骤,常用于计算、数据处理和自动推理。精确而言,算法是一个表示为有限长列表的有效方法。算法应包含清晰定义的指令用于计算函数。 来自维基百科: 算法
论文浅尝 | GEOM-GCN: Geometric Graph Convolutional Networks
开放知识图谱
14+阅读 · 2020年4月8日
【NeurIPS2019】图变换网络:Graph Transformer Network
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
VIP会员
相关资讯
论文浅尝 | GEOM-GCN: Geometric Graph Convolutional Networks
开放知识图谱
14+阅读 · 2020年4月8日
【NeurIPS2019】图变换网络:Graph Transformer Network
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
Top
微信扫码咨询专知VIP会员