While there exist mixnets that can anonymously route large amounts of data packets with end to end latency that can be as low as a second, %making them attractive for a variety of applications, combining this level of performance with strong verifiability and reliability properties that ensure the correct processing and delivery of packets has proved challenging. Indeed, existing verifiability mechanisms are incompatible with scalable low-latency operation due to imposing significant latency overheads measuring in minutes to hours, hence severely limiting the variety of applications mixnets can serve. We address this important gap by proposing a scheme that can estimate reliability scores for a mixnet's links and nodes in a decentralized manner with essentially optimal complexity that is independent of the total traffic routed through the mixnet. The scores can be computed publicly by all participants from a set of measurement packets that are eventually revealed and act as a random sample of the traffic, without affecting mixnet transmission latency for client packets or incurring significant bandwidth overhead. Our scheme assumes client credentials and relies on VRF-based routing, a novel primitive that ensures that legitimate client packets follow the routing policy of the mixnet, as well as randomly generating unforgeable measurement packets. We experimentally validate our construction both in unreliable and adversarial settings, demonstrating its feasibility.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
10+阅读 · 2022年3月14日
Arxiv
23+阅读 · 2021年12月19日
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
10+阅读 · 2022年3月14日
Arxiv
23+阅读 · 2021年12月19日
Arxiv
11+阅读 · 2019年4月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员