In combinatorial optimization, matroids provide one of the most elegant structures for algorithm design. This is perhaps best identified by the Edmonds-Rado theorem relating the success of the simple greedy algorithm to the anatomy of the optimal basis of a matroid [Edm71; Rad57]. As a response, much energy has been devoted to understanding a matroid's favorable computational properties. Yet surprisingly, not much is understood where parallel algorithm design is concerned. Specifically, while prior work has investigated the task of finding an arbitrary basis in parallel computing settings [KUW88], the more complex task of finding the optimal basis remains unexplored. We initiate this study by reexamining Bor\r{u}vka's minimum weight spanning tree algorithm in the language of matroid theory, identifying a new characterization of the optimal basis by way of a matroid's cocircuits as a result. Furthermore, we then combine such insights with special properties of binary matroids to reduce optimization in a binary matroid to the simpler task of search for an arbitrary basis, with only logarithmic asymptotic overhead. Consequentially, we are able to compose our reduction with a known basis search method of [KUW88] to obtain a novel algorithm for finding the optimal basis of a binary matroid with only sublinearly many adaptive rounds of queries to an independence oracle. To the authors' knowledge, this is the first parallel algorithm for matroid optimization to outperform the greedy algorithm in terms of adaptive complexity, for any class of matroid not represented by a graph.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年9月27日
Arxiv
0+阅读 · 2024年9月27日
Arxiv
23+阅读 · 2021年12月19日
Arxiv
38+阅读 · 2020年12月2日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
0+阅读 · 2024年9月27日
Arxiv
0+阅读 · 2024年9月27日
Arxiv
23+阅读 · 2021年12月19日
Arxiv
38+阅读 · 2020年12月2日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员