The $K$ User Linear Computation Broadcast (LCBC) problem is comprised of $d$ dimensional data (from $\mathbb{F}_q$), that is fully available to a central server, and $K$ users, who require various linear computations of the data, and have prior knowledge of various linear functions of the data as side-information. The optimal broadcast cost is the minimum number of $q$-ary symbols to be broadcast by the server per computation instance, for every user to retrieve its desired computation. The reciprocal of the optimal broadcast cost is called the capacity. The main contribution of this paper is the exact capacity characterization for the $K=3$ user LCBC for all cases, i.e., for arbitrary finite fields $\mathbb{F}_q$, arbitrary data dimension $d$, and arbitrary linear side-informations and demands at each user. A remarkable aspect of the converse is that unlike the $2$ user LCBC whose capacity was determined previously, the entropic formulation (where the entropies of demands and side-informations are specified, but not their functional forms) is insufficient to obtain a tight converse for the $3$ user LCBC. Instead, the converse exploits functional submodularity. Notable aspects of achievability include a decomposition of the users' collective signal space into subspaces that allow different degrees of efficiency in broadcast cost, revealing a tradeoff that leads to a constrained water-filling solution. Random coding arguments are invoked to resolve compatibility issues that arise as each user has a different view of these subspaces, conditioned on its own side-information.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员