This paper investigates the efficacy of a regularized multi-task learning (MTL) framework based on SVM (M-SVM) to answer whether MTL always provides reliable results and how MTL outperforms independent learning. We first find that M-SVM is Bayes risk consistent in the limit of large sample size. This implies that despite the task dissimilarities, M-SVM always produces a reliable decision rule for each task in terms of misclassification error when the data size is large enough. Furthermore, we find that the task-interaction vanishes as the data size goes to infinity, and the convergence rates of M-SVM and its single-task counterpart have the same upper bound. The former suggests that M-SVM cannot improve the limit classifier's performance; based on the latter, we conjecture that the optimal convergence rate is not improved when the task number is fixed. As a novel insight of MTL, our theoretical and experimental results achieved an excellent agreement that the benefit of the MTL methods lies in the improvement of the pre-convergence-rate factor (PCR, to be denoted in Section III) rather than the convergence rate. Moreover, this improvement of PCR factors is more significant when the data size is small.


翻译:本文调查基于SVM(M-SVM)的常规化多任务学习框架(MTL)的功效,以回答MTL是否总是提供可靠的结果,以及MTL如何超越独立学习。我们首先发现,M-SVM是贝斯的风险在大抽样规模的限度内是一致的。这意味着,尽管任务不尽相同,M-SVM总是在数据大小足够大的情况下,从错误分类错误的角度对每项任务产生可靠的决定规则。此外,我们发现任务间交流随着数据规模变得不精确而消失,M-SVM及其单一任务对应方的趋同率也具有相同的最高约束。我们首先发现M-SVM无法改善限制分类员的性能;根据后者,我们推测,在任务数目固定时,最佳趋同率不会得到改善。由于对MTL的理论和实验结果有了新的认识,即MTL方法的好处在于改进前的精确范围,M-SVM及其单一任务对应方的趋同率的趋同率的趋同率比图三要小得多。

0
下载
关闭预览

相关内容

多任务学习(MTL)是机器学习的一个子领域,可以同时解决多个学习任务,同时利用各个任务之间的共性和差异。与单独训练模型相比,这可以提高特定任务模型的学习效率和预测准确性。多任务学习是归纳传递的一种方法,它通过将相关任务的训练信号中包含的域信息用作归纳偏差来提高泛化能力。通过使用共享表示形式并行学习任务来实现,每个任务所学的知识可以帮助更好地学习其它任务。
专知会员服务
50+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
169+阅读 · 2019年10月11日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
31+阅读 · 2021年3月29日
Arxiv
14+阅读 · 2020年12月17日
A Survey on Bayesian Deep Learning
Arxiv
61+阅读 · 2020年7月2日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员