We carry out the convergence analysis of the Scalar Auxiliary Variable (SAV) method applied to the nonlinear Schr\"odinger equation which preserves a modified Hamiltonian on the discrete level. We derive a weak and strong convergence result, establish second-order global error bounds and present long time error estimates on the modified Hamiltonian. In addition, we illustrate the favorable energy conservation of the SAV method compared to classical splitting schemes in certain applications.


翻译:我们对适用于非线性Schr\'odinger方程式的Scalar辅助变量(SAV)方法进行了趋同分析,该方程式将修改的汉密尔顿人保留在离散水平上。我们得出了一个薄弱和强烈的趋同结果,确定了二级全球误差界限,并对修改的汉密尔顿人提出了长期误差估计。此外,我们举例说明了SAV方法与某些应用中传统的分裂计划相比,有利于节能。

0
下载
关闭预览

相关内容

Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
VIP会员
相关资讯
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员