In this paper, we consider the problem of clustering graph nodes and sparsifying graph edges over distributed graphs, when graph edges with possibly edge duplicates are observed at physically remote sites. Although edge duplicates across different sites appear to be beneficial at the first glance, in fact they could make the clustering and sparsification more complicated since potentially their processing would need extra computations and communications. We propose the first communication-optimal algorithms for two well-established communication models namely the message passing and the blackboard models. Specifically, given a graph on $n$ nodes with edges observed at $s$ sites, our algorithms achieve communication costs $\tilde{O}(ns)$ and $\tilde{O}(n+s)$ ($\tilde{O}$ hides a polylogarithmic factor), which almost match their lower bounds, $\Omega(ns)$ and $\Omega(n+s)$, in the message passing and the blackboard models respectively. The communication costs are asymptotically the same as those under non-duplication models, under an assumption on edge distribution. Our algorithms can also guarantee clustering quality nearly as good as that of centralizing all edges and then applying any standard clustering algorithm. Moreover, we perform the first investigation of distributed constructions of graph spanners in the blackboard model. We provide almost matching communication lower and upper bounds for both multiplicative and additive spanners. For example, the communication lower bounds of constructing a $(2k-1)$-spanner in the blackboard with and without duplication models are $\Omega(s+n^{1+1/k}\log s)$ and $\Omega(s+n^{1+1/k}\max\{1,s^{-1/2-1/(2k)}\log s\})$ respectively, which almost match the upper bound $\tilde{O}(s+n^{1+1/k})$ for both models.


翻译:在本文中, 我们考虑将图形节点组合起来, 并在分布式图表上对图形边缘进行垃圾化, 当物理边远地点观测到可能边缘复制的图形边缘。 虽然不同站点的边缘复制物在第一眼中似乎是有益的, 事实上它们可能会使组合和垃圾化更加复杂化更加复杂, 因为其处理可能需要额外的计算和通信。 我们为两种成熟的通信模式, 即信息传递和黑板模型, 提议第一个通信最优化的算法。 具体地说, 在信息传递和黑板模型中, 以美元为顶点, 我们的算法可以实现通信成本 $\ tilde{O} 美元和 $\ tilde{O} (n+) 美元。 事实上, 它们可以让 Otildreal + 双端的计算模型( $_ =_ + black) 和 黑板模型中的所有 。 通信成本成本可以和在不进行下端分析的 Odreal- slational 格式中, 运行一个正常的模型。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
专知会员服务
52+阅读 · 2020年9月7日
专知会员服务
158+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
深度学习医学图像分析文献集
机器学习研究会
17+阅读 · 2017年10月13日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
12+阅读 · 2021年10月22日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
深度学习医学图像分析文献集
机器学习研究会
17+阅读 · 2017年10月13日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员