Representation learning is a widely adopted framework for learning in data-scarce environments to obtain a feature extractor or representation from various different yet related tasks. Despite extensive research on representation learning, decentralized approaches remain relatively underexplored. This work develops a decentralized projected gradient descent-based algorithm for multi-task representation learning. We focus on the problem of multi-task linear regression in which multiple linear regression models share a common, low-dimensional linear representation. We present an alternating projected gradient descent and minimization algorithm for recovering a low-rank feature matrix in a diffusion-based decentralized and federated fashion. We obtain constructive, provable guarantees that provide a lower bound on the required sample complexity and an upper bound on the iteration complexity of our proposed algorithm. We analyze the time and communication complexity of our algorithm and show that it is fast and communication-efficient. We performed numerical simulations to validate the performance of our algorithm and compared it with benchmark algorithms.
翻译:表示学习是一种在数据稀缺环境中广泛采用的学习框架,旨在从多个不同但相关的任务中获取特征提取器或表示。尽管对表示学习已进行了广泛研究,但去中心化方法仍相对探索不足。本研究开发了一种基于去中心化投影梯度下降的多任务表示学习算法。我们聚焦于多任务线性回归问题,其中多个线性回归模型共享一个共同的低维线性表示。我们提出了一种交替投影梯度下降与最小化算法,以基于扩散的去中心化联邦方式恢复低秩特征矩阵。我们获得了建设性的可证明保证,为所提出算法所需样本复杂度提供了下界,并为迭代复杂度提供了上界。我们分析了算法的时间和通信复杂度,表明其具有快速性和通信高效性。我们通过数值模拟验证了算法的性能,并与基准算法进行了比较。