This paper introduces versatile filters to construct efficient convolutional neural networks that are widely used in various visual recognition tasks. Considering the demands of efficient deep learning techniques running on cost-effective hardware, a number of methods have been developed to learn compact neural networks. Most of these works aim to slim down filters in different ways, \eg,~investigating small, sparse or quantized filters. In contrast, we treat filters from an additive perspective. A series of secondary filters can be derived from a primary filter with the help of binary masks. These secondary filters all inherit in the primary filter without occupying more storage, but once been unfolded in computation they could significantly enhance the capability of the filter by integrating information extracted from different receptive fields. Besides spatial versatile filters, we additionally investigate versatile filters from the channel perspective. Binary masks can be further customized for different primary filters under orthogonal constraints. We conduct theoretical analysis on network complexity and an efficient convolution scheme is introduced. Experimental results on benchmark datasets and neural networks demonstrate that our versatile filters are able to achieve comparable accuracy as that of original filters, but require less memory and computation cost.


翻译:本文引入了多功能过滤器,以构建高效的进化神经网络,这些过滤器被广泛用于各种视觉识别任务。考虑到在具有成本效益的硬件上运行的高效深深学习技术的需求,已经开发了一些方法来学习紧凑神经网络。这些工程大多旨在以不同的方式缩小过滤器, 包括:\eg, ~ 调查小的、 稀散的或量化的过滤器。 相反, 我们从添加的角度处理过滤器。 一系列二级过滤器可以在二元面罩的帮助下从初级过滤器中产生。 这些二级过滤器在初级过滤器中全部继承下来,无需更多存储,但一旦在计算过程中展开,它们就可以通过整合从不同可接收域提取的信息,大大增强过滤器的能力。 除了空间多功能过滤器之外,我们还要从频道角度进一步调查多用途过滤器。 双面罩可以进一步为不同主要过滤器定制, 以不同或多层限制为主过滤器定制。 我们对网络复杂性和高效的进化计划进行理论分析。 基准数据集和神经网络的实验结果表明,我们的多功能过滤器能够达到原始过滤器的相似性,但需要较少的内存和成本。

1
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
11+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
最前沿的深度学习论文、架构及资源分享
深度学习与NLP
13+阅读 · 2018年1月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
Deep Face Recognition: A Survey
Arxiv
17+阅读 · 2019年2月12日
Arxiv
9+阅读 · 2018年3月10日
VIP会员
相关VIP内容
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
11+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
最前沿的深度学习论文、架构及资源分享
深度学习与NLP
13+阅读 · 2018年1月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员