Neurons in the brain are often finely tuned for specific task variables. Moreover, such disentangled representations are highly sought after in machine learning. Here we mathematically prove that simple biological constraints on neurons, namely nonnegativity and energy efficiency in both activity and weights, promote such sought after disentangled representations by enforcing neurons to become selective for single factors of task variation. We demonstrate these constraints lead to disentangling in a variety of tasks and architectures, including variational autoencoders. We also use this theory to explain why the brain partitions its cells into distinct cell types such as grid and object-vector cells, and also explain when the brain instead entangles representations in response to entangled task factors. Overall, this work provides a mathematical understanding of why, when, and how neurons represent factors in both brains and machines, and is a first step towards understanding of how task demands structure neural representations.
翻译:大脑中的神经元通常会根据特定任务变量进行细微调整。 此外, 在机器学习中, 也非常寻求这种分解的表达方式。 在这里, 我们用数学来证明对神经元的简单生物限制, 即活动与重量中的非惯性与能源效率, 通过强制神经元成为任务变异的单一因素的选择性, 来促进分解的表达方式。 我们证明这些限制导致在各种任务和结构中脱钩, 包括变异自动代数。 我们还利用这个理论来解释为什么大脑将其细胞分割成不同的细胞类型, 如电网和天体- 矢量细胞, 并且解释大脑在什么时候而不是纠缠在被缠绕的任务因素中。 总之, 这项工作提供了数学上的理解, 为什么, 何时, 以及神经元如何代表大脑和机器中的各种因素, 并且是迈向理解任务如何要求神经代言的第一个步骤。