This paper proposes a real-time model predictive control (MPC) scheme to execute multiple tasks using robots over a finite-time horizon. In industrial robotic applications, we must carefully consider multiple constraints for avoiding joint position, velocity, and torque limits. In addition, singularity-free and smooth motions require executing tasks continuously and safely. Instead of formulating nonlinear MPC problems, we devise linear MPC problems using kinematic and dynamic models linearized along nominal trajectories produced by hierarchical controllers. These linear MPC problems are solvable via the use of Quadratic Programming; therefore, we significantly reduce the computation time of the proposed MPC framework so the resulting update frequency is higher than 1 kHz. Our proposed MPC framework is more efficient in reducing task tracking errors than a baseline based on operational space control (OSC). We validate our approach in numerical simulations and in real experiments using an industrial manipulator. More specifically, we deploy our method in two practical scenarios for robotic logistics: 1) controlling a robot carrying heavy payloads while accounting for torque limits, and 2) controlling the end-effector while avoiding singularities.
翻译:本文提出了一个实时模型预测控制( MPC) 计划, 用于在一定时间范围内使用机器人执行多项任务。 在工业机器人应用中, 我们必须仔细考虑多重限制, 以避免共同位置、 速度和托盘限制。 此外, 无奇点和顺畅的动作需要持续和安全地执行任务。 我们不是提出非线性 MPC 问题, 而是使用按等级控制器生成的名义轨迹直线排列的运动模型和动态模型来设计线性 MPC 问题。 这些线性 MPC 问题通过使用 Quaturatic 编程可以解脱; 因此, 我们大幅缩短了拟议的 MPC 框架的计算时间, 从而导致的更新频率高于 1 kHz 。 我们提议的 MPC 框架比基于操作空间控制( OSC) 的基线更高效地减少任务跟踪错误。 我们验证我们在数字模拟和使用工业操纵器进行实际实验的方法。 更具体地说, 我们在两种机器人物流的实际假设中运用我们的方法:1) 控制携带重有效有效有效的有效有效有效有效载荷, 同时避免 。