Simulating coupled PDE systems is computationally intensive, and prior efforts have largely focused on training surrogates on the joint (coupled) data, which requires a large amount of data. In the paper, we study compositional diffusion approaches where diffusion models are only trained on the decoupled PDE data and are composed at inference time to recover the coupled field. Specifically, we investigate whether the compositional strategy can be feasible under long time horizons involving a large number of time steps. In addition, we compare a baseline diffusion model with that trained using the v-parameterization strategy. We also introduce a symmetric compositional scheme for the coupled fields based on the Euler scheme. We evaluate on Reaction-Diffusion and modified Burgers with longer time grids, and benchmark against a Fourier Neural Operator trained on coupled data. Despite seeing only decoupled training data, the compositional diffusion models recover coupled trajectories with low error. v-parameterization can improve accuracy over a baseline diffusion model, while the neural operator surrogate remains strongest given that it is trained on the coupled data. These results show that compositional diffusion is a viable strategy towards efficient, long-horizon modeling of coupled PDEs.
翻译:耦合偏微分方程系统的模拟计算成本高昂,先前的研究主要集中于利用联合(耦合)数据训练代理模型,这需要大量数据。本文研究了组合扩散方法,其中扩散模型仅使用解耦的偏微分方程数据进行训练,并在推理时组合以恢复耦合场。具体而言,我们探究了在涉及大量时间步长的长时域下,组合策略是否可行。此外,我们将基线扩散模型与采用v参数化策略训练的模型进行了比较。我们还基于欧拉格式,为耦合场引入了一种对称组合方案。我们在更长的时间网格上对反应-扩散方程和修正的Burgers方程进行了评估,并以在耦合数据上训练的傅里叶神经算子作为基准进行对比。尽管仅接触解耦的训练数据,组合扩散模型仍能以较低误差恢复耦合轨迹。v参数化相比基线扩散模型能提高精度,而神经算子代理模型由于在耦合数据上训练,性能仍然最强。这些结果表明,组合扩散是实现高效、长时域耦合偏微分方程建模的可行策略。