In the study of McKean-Vlasov stochastic differential equations (MV-SDEs), numerical approximation plays a crucial role in understanding the behavior of interacting particle systems (IPS). Classical Milstein schemes provide strong convergence of order one under globally Lipschitz coefficients. Nevertheless, many MV-SDEs arising from applications possess super-linearly growing drift and diffusion terms, where classical methods may diverge and particle corruption can occur. In the present work, we aim to fill this gap by developing a unified class of Milstein-type discretizations handling both super-linear drift and diffusion coefficients. The proposed framework includes the tamed-, tanh-, and sine-Milstein methods as special cases and establishes order-one strong convergence for the associated interacting particle system under mild regularity assumptions, requiring only once differentiable coefficients. In particular, our results complement Chen et al. (Electron. J. Probab., 2025), where a taming-based Euler scheme was only tested numerically without theoretical guarantees, by providing a rigorous convergence theory within a broader Milstein-type framework. The analysis relies on discrete-time arguments and binomial-type expansions, avoiding the continuous-time It\^o approach that is standard in the literature. Numerical experiments are presented to illustrate the convergence behavior and support the theoretical findings.


翻译:在McKean-Vlasov随机微分方程(MV-SDE)的研究中,数值逼近对于理解相互作用粒子系统(IPS)的行为至关重要。经典的Milstein格式在全局Lipschitz系数下可提供一阶强收敛。然而,许多应用场景中出现的MV-SDE具有超线性增长的漂移项和扩散项,此时经典方法可能发散并导致粒子系统崩溃。本文旨在通过构建一类统一的Milstein型离散化格式来填补这一空白,该格式能够同时处理超线性漂移系数与扩散系数。所提出的框架包含驯化Milstein法、双曲正切Milstein法及正弦Milstein法作为特例,并在温和的正则性假设下(仅需系数一阶可微)为相应的相互作用粒子系统建立了一阶强收敛性。特别地,我们的结果与Chen等人(Electron. J. Probab., 2025)的工作形成互补——该研究仅通过数值实验验证了基于驯化技术的欧拉格式,而未提供理论保证;本文则在更广泛的Milstein型框架内建立了严格的收敛理论。分析过程采用离散时间论证与二项式型展开方法,避免了文献中标准的连续时间Itô分析路径。文中通过数值实验展示了收敛行为,并验证了理论结果。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VLP: A Survey on Vision-Language Pre-training
Arxiv
11+阅读 · 2022年2月21日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员