Graph neural networks (GNNs) have been demonstrated as a powerful tool for analysing non-Euclidean graph data. However, the lack of efficient distributed graph learning systems severely hinders applications of GNNs, especially when graphs are big, of high density or with highly skewed node degree distributions. In this paper, we present a new distributed graph learning system GraphTheta, which supports multiple training strategies and enables efficient and scalable learning on big graphs. GraphTheta implements both localized and globalized graph convolutions on graphs, where a new graph learning abstraction NN-TGAR is designed to bridge the gap between graph processing and graph learning frameworks. A distributed graph engine is proposed to conduct the stochastic gradient descent optimization with hybrid-parallel execution. Moreover, we add support for a new cluster-batched training strategy in addition to the conventional global-batched and mini-batched ones. We evaluate GraphTheta using a number of network data with network size ranging from small-, modest- to large-scale. Experimental results show that GraphTheta scales almost linearly to 1,024 workers and trains an in-house developed GNN model within 26 hours on Alipay dataset of 1.4 billion nodes and 4.1 billion attributed edges. Moreover, GraphTheta also obtains better prediction results than the state-of-the-art GNN methods. To the best of our knowledge, this work represents the largest edge-attributed GNN learning task conducted on a billion-scale network in the literature.


翻译:演示了一个新的分布式图表学习系统(GNNS),该系统支持多种培训战略,并能在大图表上进行有效和可扩缩的学习。GapTheta在图表中同时使用本地化和全球化的图形变异,该图旨在弥合图形网络处理和图形学习框架之间的差距。建议使用分布式图表引擎,以进行超强、高密度或高度偏斜的节点分布式分布式图表教学系统。此外,我们除了支持传统的全球布局和微型布局外,还支持新的集束化培训战略。我们使用从小、小到大范围网络变异的网络变异数据来评估GapTheta。实验结果显示,Greatheta 模型几乎线性至直线性梯式的梯度梯度下降与图形学习框架之间的差距。此外,我们还提议用混合式双向双向双向的双向梯度梯度模型来优化梯度梯度的梯度梯度下降。我们用从小、小到大到大范围的网络变异度数据来评估GTheta。实验结果显示,在最短、最接近线级的模型到最高级的GNNNA的阵列的阵列的阵列的阵列中,在最高级的阵列中还以10亿次进行。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
152+阅读 · 2020年5月26日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
105+阅读 · 2020年5月3日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
图神经网络库PyTorch geometric
图与推荐
17+阅读 · 2020年3月22日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Graph Neural Networks 综述
计算机视觉life
29+阅读 · 2019年8月13日
深度学习在推荐系统中的应用及论文小结
专知
14+阅读 · 2019年7月8日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Deep Learning & Neural Network 免费学习资源【译】
乐享数据DataScientists
5+阅读 · 2017年8月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Arxiv
43+阅读 · 2019年12月20日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
3+阅读 · 2017年5月14日
VIP会员
相关资讯
图神经网络库PyTorch geometric
图与推荐
17+阅读 · 2020年3月22日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Graph Neural Networks 综述
计算机视觉life
29+阅读 · 2019年8月13日
深度学习在推荐系统中的应用及论文小结
专知
14+阅读 · 2019年7月8日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Deep Learning & Neural Network 免费学习资源【译】
乐享数据DataScientists
5+阅读 · 2017年8月20日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员