本文介绍了一阶优化方法及其在机器学习中的应用。这不是一门关于机器学习的课程(特别是它不涉及建模和统计方面的考虑),它侧重于使用和分析可以扩展到具有大量参数的大型数据集和模型的廉价方法。这些方法都是围绕“梯度下降”的概念而变化的,因此梯度的计算起着主要的作用。本课程包括最优化问题的基本理论性质(特别是凸分析和一阶微分学)、梯度下降法、随机梯度法、自动微分、浅层和深层网络。

成为VIP会员查看完整内容
114

相关内容

【经典书】机器学习:贝叶斯和优化方法,1075页pdf
专知会员服务
395+阅读 · 2020年6月8日
机器学习速查手册,135页pdf
专知会员服务
338+阅读 · 2020年3月15日
专知会员服务
112+阅读 · 2019年12月24日
【课程】纽约大学 DS-GA 1003 Machine Learning
专知会员服务
45+阅读 · 2019年10月29日
机器学习中的最优化算法总结
人工智能前沿讲习班
22+阅读 · 2019年3月22日
421页《机器学习数学基础》最新2019版PDF下载
Machine Learning:十大机器学习算法
开源中国
19+阅读 · 2018年3月1日
干货|掌握机器学习数学基础之优化[1](重点知识)
机器学习研究会
9+阅读 · 2017年11月19日
资源 | CMU统计机器学习2017春季课程:研究生水平
机器之心
14+阅读 · 2017年10月30日
Arxiv
44+阅读 · 2019年12月20日
Optimization for deep learning: theory and algorithms
Arxiv
103+阅读 · 2019年12月19日
Arxiv
22+阅读 · 2019年11月24日
Arxiv
18+阅读 · 2019年1月16日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
8+阅读 · 2018年12月6日
Arxiv
22+阅读 · 2018年8月30日
Arxiv
7+阅读 · 2018年5月23日
Arxiv
4+阅读 · 2017年7月25日
VIP会员
相关VIP内容
相关资讯
机器学习中的最优化算法总结
人工智能前沿讲习班
22+阅读 · 2019年3月22日
421页《机器学习数学基础》最新2019版PDF下载
Machine Learning:十大机器学习算法
开源中国
19+阅读 · 2018年3月1日
干货|掌握机器学习数学基础之优化[1](重点知识)
机器学习研究会
9+阅读 · 2017年11月19日
资源 | CMU统计机器学习2017春季课程:研究生水平
机器之心
14+阅读 · 2017年10月30日
相关论文
Arxiv
44+阅读 · 2019年12月20日
Optimization for deep learning: theory and algorithms
Arxiv
103+阅读 · 2019年12月19日
Arxiv
22+阅读 · 2019年11月24日
Arxiv
18+阅读 · 2019年1月16日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
8+阅读 · 2018年12月6日
Arxiv
22+阅读 · 2018年8月30日
Arxiv
7+阅读 · 2018年5月23日
Arxiv
4+阅读 · 2017年7月25日
微信扫码咨询专知VIP会员