Principal component analysis (PCA), a ubiquitous dimensionality reduction technique in signal processing, searches for a projection matrix that minimizes the mean squared error between the reduced dataset and the original one. Since classical PCA is not tailored to address concerns related to fairness, its application to actual problems may lead to disparity in the reconstruction errors of different groups (e.g., men and women, whites and blacks, etc.), with potentially harmful consequences such as the introduction of bias towards sensitive groups. Although several fair versions of PCA have been proposed recently, there still remains a fundamental gap in the search for algorithms that are simple enough to be deployed in real systems. To address this, we propose a novel PCA algorithm which tackles fairness issues by means of a simple strategy comprising a one-dimensional search which exploits the closed-form solution of PCA. As attested by numerical experiments, the proposal can significantly improve fairness with a very small loss in the overall reconstruction error and without resorting to complex optimization schemes. Moreover, our findings are consistent in several real situations as well as in scenarios with both unbalanced and balanced datasets.


翻译:主要组成部分分析(PCA)是信号处理中无处不在的减少维度技术(PCA),在信号处理中寻找一个预测矩阵,最大限度地减少减少减少的数据集与原始数据集之间的平均平方差错。由于古典的CPA不是专门为处理与公平有关的关切问题而设计的,因此对实际问题的应用可能导致不同群体(如男女、白人和黑人等)重建错误的差异,产生潜在的有害后果,例如对敏感群体采取偏见。虽然最近提出了多种公平的CPA版本,但在寻找能够被实际系统应用到的简单算法方面仍然存在根本差距。为了解决这个问题,我们建议采用新的CPA算法,通过简单战略解决公平问题,包括利用CPC的封闭式解决办法进行单维搜索。正如数字实验所证明的那样,该提案可以大大改善公平性,在整个重建错误中损失很小,而不必采用复杂的优化计划。此外,我们的调查结果在若干真实情况下,以及在有不平衡和平衡的假设中是一致的。

0
下载
关闭预览

相关内容

在统计中,主成分分析(PCA)是一种通过最大化每个维度的方差来将较高维度空间中的数据投影到较低维度空间中的方法。给定二维,三维或更高维空间中的点集合,可以将“最佳拟合”线定义为最小化从点到线的平均平方距离的线。可以从垂直于第一条直线的方向类似地选择下一条最佳拟合线。重复此过程会产生一个正交的基础,其中数据的不同单个维度是不相关的。 这些基向量称为主成分。
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年10月1日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员