There has been an increasing interest in using cell and gene therapy (CGT) to treat/cure difficult diseases. The hallmark of CGT trials are the small sample size and extremely high efficacy. Due to the innovation and novelty of such therapies, when there is missing data, more scrutiny is exercised, and regulators often request for missing data handling strategy when missing data occurs. Often, multiple imputation (MI) will be used. MI for continuous endpoint is well established but literature of MI for binary endpoint is lacking. In this work, we compare and develop 3 new methods to handle missing data using MI for binary endpoints when the sample size is small and efficacy extremely high. The parameter of interest is population proportion of success. We show that our proposed methods performed well and produced good 95% coverage. We also applied our methods to an actual clinical study, the Clinical Islet Transplantation (CIT) Protocol 07, conducted by National Institutes of Health (NIH).


翻译:近年来,利用细胞与基因疗法(CGT)治疗/治愈疑难疾病的研究日益受到关注。CGT试验的典型特征在于样本量小且疗效极高。由于此类疗法具有创新性与新颖性,当出现数据缺失时,监管机构通常会进行更严格的审查,并要求制定数据缺失处理策略。多重插补(MI)是常用的处理方法。针对连续型终点的MI方法已较为成熟,但针对二元终点的MI方法文献尚显不足。本研究在小样本且疗效极高的条件下,针对二元终点的缺失数据处理问题,比较并提出了三种基于MI的新方法。关注参数为总体成功率。研究结果表明,所提方法表现良好,能产生理想的95%覆盖区间。我们还将这些方法应用于美国国立卫生研究院(NIH)开展的实际临床研究——临床胰岛移植(CIT)07号方案。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员