With the increasing size of large language models, layer pruning has gained increased attention as a hardware-friendly approach for model compression. However, existing layer pruning methods struggle to simultaneously address key practical deployment challenges, including performance degradation, high training costs, and limited acceleration. To overcome these limitations, we propose \name, a task-\underline{E}ffective, training-\underline{E}conomical and inference-\underline{E}fficient layer pruning framework. \namespace introduces two key innovations: (1) a differentiable mask optimization method using a Gumbel-TopK sampler, enabling efficient and precise pruning mask search; and (2) an entropy-aware adaptive knowledge distillation strategy that enhances task performance. Extensive experiments over diverse model architectures and benchmarks demonstrate the superiority of our method over state-of-the-art approaches. Notably, \namespace achieves 96\% accuracy, a mere 0.8\% drop from the original model (96.8\%) on MATH-500 when pruning 25\% layers of Qwen3-32B, outperforming existing SOTA (95\%), with a 1.33$\times$ inference speedup by consuming merely 0.5B tokens (0.5\% of the post-training data volume).


翻译:随着大型语言模型规模的不断增大,层级剪枝作为一种硬件友好的模型压缩方法受到越来越多的关注。然而,现有的层级剪枝方法难以同时应对实际部署中的关键挑战,包括性能下降、训练成本高昂以及加速效果有限。为克服这些限制,我们提出了\\name,一个任务有效、训练经济且推理高效的层级剪枝框架。\\namespace引入了两项关键创新:(1)采用Gumbel-TopK采样器的可微分掩码优化方法,实现了高效且精确的剪枝掩码搜索;(2)一种熵感知的自适应知识蒸馏策略,以提升任务性能。在不同模型架构和基准测试上的广泛实验证明了我们方法相对于现有最先进方法的优越性。值得注意的是,在Qwen3-32B模型上剪除25%的层级时,\\namespace在MATH-500数据集上达到了96%的准确率,仅比原始模型(96.8%)下降了0.8%,优于现有SOTA方法(95%),同时通过仅消耗0.5B token(相当于后训练数据量的0.5%)实现了1.33倍的推理加速。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员