Incident management (IM) is central to the reliability of large-scale cloud systems. Yet manual IM, where on-call engineers examine metrics, logs, and traces is labor-intensive and error-prone in the face of massive and heterogeneous observability data. Existing automated IM approaches often struggle to generalize across systems, provide limited interpretability, and incur high deployment costs, which hinders adoption in practice. In this paper, we present OpsAgent, a lightweight, self-evolving multi-agent system for IM that employs a training-free data processor to convert heterogeneous observability data into structured textual descriptions, along with a multi-agent collaboration framework that makes diagnostic inference transparent and auditable. To support continual capability growth, OpsAgent also introduces a dual self-evolution mechanism that integrates internal model updates with external experience accumulation, thereby closing the deployment loop. Comprehensive experiments on the OPENRCA benchmark demonstrate state-of-the-art performance and show that OpsAgent is generalizable, interpretable, cost-efficient, and self-evolving, making it a practically deployable and sustainable solution for long-term operation in real-world cloud systems.
翻译:事件管理(IM)对于大规模云系统的可靠性至关重要。然而,面对海量异构的可观测性数据,由值班工程师人工检查指标、日志和追踪的手动IM方式不仅劳动密集,且容易出错。现有的自动化IM方法往往难以跨系统泛化,可解释性有限,且部署成本高昂,这阻碍了其在实践中的应用。本文提出OpsAgent,一种轻量级、自演进的多智能体系统,用于事件管理。该系统采用免训练的数据处理器,将异构可观测性数据转换为结构化文本描述,并结合多智能体协作框架,使诊断推理过程透明且可审计。为支持持续能力增长,OpsAgent还引入了双重自演进机制,整合内部模型更新与外部经验积累,从而形成部署闭环。在OPENRCA基准上的综合实验表明,OpsAgent实现了最先进的性能,并展现出可泛化、可解释、成本高效和自演进的特点,使其成为适用于真实云系统长期运维的、可实际部署且可持续的解决方案。