Representing textual information as real-numbered embeddings has become the norm in NLP. Moreover, with the rise of public interest in large language models (LLMs), Embeddings as a Service (EaaS) has rapidly gained traction as a business model. This is not without outstanding security risks, as previous research has demonstrated that sensitive data can be reconstructed from embeddings, even without knowledge of the underlying model that generated them. However, such work is limited by its sole focus on English, leaving all other languages vulnerable to attacks by malicious actors. %As many international and multilingual companies leverage EaaS, there is an urgent need for research into multilingual LLM security. To this end, this work investigates LLM security from the perspective of multilingual embedding inversion. Concretely, we define the problem of black-box multilingual and cross-lingual inversion attacks, with special attention to a cross-domain scenario. Our findings reveal that multilingual models are potentially more vulnerable to inversion attacks than their monolingual counterparts. This stems from the reduced data requirements for achieving comparable inversion performance in settings where the underlying language is not known a-priori. To our knowledge, this work is the first to delve into multilinguality within the context of inversion attacks, and our findings highlight the need for further investigation and enhanced defenses in the area of NLP Security.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年3月5日
Arxiv
0+阅读 · 2024年3月4日
Tree Cross Attention
Arxiv
0+阅读 · 2024年3月1日
Arxiv
14+阅读 · 2018年5月15日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
0+阅读 · 2024年3月5日
Arxiv
0+阅读 · 2024年3月4日
Tree Cross Attention
Arxiv
0+阅读 · 2024年3月1日
Arxiv
14+阅读 · 2018年5月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员